Fluoroperoxouranates(VI). Synthesis and physico-chemical studies of $(NH_4)_2[UO_2(O_2)F_2]$ and $K_2[UO_2(O_2)F_2(H_2O)]$

Chira R. Bhattacharjee, Mihir K. Chaudhuri^{*}, Shiv K. Chettri and John J. Laiwan Department of Chemistry, North-Eastern Hill University, Shillong 793 003 (India)

(Received October 13, 1992; accepted March 17, 1993)

Abstract

Complex peroxouranates $(NH_4)_2[UO_2(O_2)F_2]$ (1) and $K_2[UO_2(O_2)F_2(H_2O)]$ (2) have been synthesized from the reaction of $UO_3 \cdot 4H_2O$ with AHF_2 ($A = NH_4$ or K) and hydrogen peroxide. The reaction of 1 with $SO_2(g)$ in an aqueous medium afforded a fluoro(sulfato)dioxouranate(VI) complex $(NH_4)_2[UO_2F_2(SO_4)] \cdot H_2O$ (3). Infrared and laser Raman spectroscopic studies have been made.

Introduction

We have been studying recently the chemistry of fluoro and mixed fluoro complexes of UO_2^{2+} [1–3] and peroxometallates [4–7]. During the course of our investigation it became necessary to synthesize fluoro(peroxo)uranates(VI). Since the preparation of such complexes [3] is rather tedious, we sought to develop an easier route. A new synthesis for $(NH_4)_2[UO_2(O_2)F_2]$ (1) and an additional example of a fluoro-(peroxo)uranate(VI), $K_2[UO_2(O_2)F_2(H_2O)]$ (2), from the reaction of $UO_3 \cdot 4H_2O$ with AHF_2 ($A = NH_4$ or K) and hydrogen peroxide and the subsequent reaction of 1 with $SO_2(g)$ in an aqueous medium constitute the subject of the current report.

Experimental

Reagent grade chemicals were used for the syntheses. Fresh samples of NH_4HF_2 and KHF_2 were prepared by the method described earlier [8]. Reactivity grade water [4, 5, 7] was used in the studies. Infrared and laser Raman (LR) spectra were recorded using instruments detailed previously [7]. Uranium, peroxide, fluoride and sulfate were estimated as reported previously [3, 7, 9].

Starting material, $UO_3 \cdot 4H_2O$

To a solution consisting of 5 g of $UO_2(NO_3)_2 \cdot 6H_2O$ in 100 cm³ water was added 10 cm³ of pyridine whereupon a yellow precipitate appeared. The precipitate was washed three or four times with water, twice with acetone, and finally dried by heating on a steam bath to obtain $UO_3 \cdot 4H_2O$. Complete removal of pyridine was monitored by IR spectroscopy.

Synthesis of $(NH_4)_2[UO_2(O_2)F_2]$ (1) and $K_2[UO_2(O_2)F_2(H_2O)]$ (2) General method

A 1.0 g (2.8 mmol) sample of $UO_3 \cdot 4H_2O$ and 2.0 g (35.1 mmol) of NH_4HF_2 or 2.73 g (35.05 mmol) of KHF_2 were mixed together and the mixture dissolved in 20 cm³ water in a 250 cm³ polyethylene beaker by warming on a steam bath. The solution was filtered to remove undissolved residue and then cooled to room temperature. To this was added 24 cm³ (211.8 mmol) of 30% H_2O_2 with stirring and the pH of the solution was raised to 6 by dropwise addition of aqueous ammonia (sp. gr. 0.9) or a 25% solution of KOH whereupon a yellow solid began to appear. Complete precipitation of the product was achieved by adding 25 cm³ of ethanol. The compound was separated by suction filtration. The yield of $(NH_4)_2[UO_2(O_2)F_2]$ (1) was 1 g (95%) whilst that of $K_2[UO_2(O_2)F_2(H_2O)]$ (2) was 1.1 g (88%).

Reaction of $(NH_4)_2[UO_2(O_2)F_2]$ (1) with $SO_2(g)$

Through a suspension of 1 (1 g, 2.7 mmol) in 20 cm³ of deoxygenated water was passed SO₂(g) with constant stirring until a clear yellow solution was obtained at pH 2. The solution was concentrated to half of its original volume by heating on a steam bath. On addition of ethanol, a yellow crystalline product was obtained. This was separated by filtration, washed with ethanol and dried *in vacuo* over conc. H₂SO₄. The yield of $(NH_4)_2[UO_2F_2(SO_4)] \cdot H_2O$ (3) was 0.9 g (77%).

^{*}Author to whom correspondence should be addressed.

Compound	Analysis ^a (%)				IR	Raman	Assignments	
	N or K	U	O _A ^b or SO ₄ ^c	F	- (cm ⁻¹)	(cm ⁻¹)		
(NH ₄) ₂ [UO ₂ (O ₂)F ₂] (1)	7.55 (7.45)	63.8 (63.29)	8.38 ^h (8.51) ^b	9.82 (10.10)	900(s) 885(s)	}	$\nu(U=O)$	
					850(s) 350(m,br)		$ \frac{\nu(O-O)}{\nu(U-F)} $	
					1470(s) 1430(s)	}	$\nu_4(N-H)$	
					1715(w) 2845(w)		$\nu_4 + \nu_6$ $2\nu_4$	
$K_2[UO_2(O_2)F_2(H_2O)]$ (2)	18.10 (17.92)	54.72 (54.56)	6.93 ^b (7.34) ^b	8.22 (8.71)	895(s) 880(s)	} 860 } 835	$\left. \right\} \nu(U=O)$	
					855(s) 360(m) 3545(s) 1635(s) 725(m)	815	$\nu(O-O)$ $\nu(U-F)$ $\nu(O-H)$ $\delta(H-O-H)$ $\rho_{t}(H-O-H)$	
$(NH_4)_2[UO_2F_2(SO_4)] \cdot H_2O$ (3)	5.82 (6.12)	52.16 (51.95)	20.14 ^c (20.96) ^c	7.95 (8.29)	910(s)		$\nu(U=O)$	
	(0.12)	(0100)	()	(0127)	1165(s) 1120(s) 1075(s)	}	ν_3	
					995(m)		ν_1	$\nu(S-O)$ modes
					678(s) 625(s) 560(s)	}	ν_4	
					455(m) 1405(s) 3450(s,br) 1640(s) 370(m)		ν_{2} $\nu_{4}(N-H)$ $\nu(O-H)$ $\delta(H-O-H)$ $\nu(U-F)$	

TABLE 1. Analytical data and structurally significant IR and Raman bands for compounds 1-3

^aCalculated values are given in parentheses.

^bActive oxygen.

Sulfate.

Results and discussion

Synthesis

Based upon the reaction of $UO_3 \cdot 4H_2O$ with AHF_2 (A = NH₄ or K) and hydrogen peroxide, a new methodology has now been developed for the synthesis of fluoro(peroxo)uranates(VI), $(NH_4)_2[UO_2(O_2)F_2]$ (1) and K₂[UO₂(O₂)F₂(H₂O)] (2), in very high yields. While a complex similar to 1 is known [3], species 2 is new. The sequence of addition of AHF₂ followed by H₂O₂ is important since the reverse order leads to the precipitation of UO₂(O₂) · 4H₂O.

Properties and characterization

Compounds 1 and 2 are yellow, microcrystalline and sparingly soluble solids. They attack glass slowly in the presence of moisture and decompose in dilute acids producing H_2O_2 .

The IR spectra of 1 and 2 and the laser Raman spectrum of 2 provide clear evidence for the occurrence of UO_2^{2+} , chelated O_2^{2-} and coordinated F⁻ (Table 1) with the corresponding absorptions being in the expected regions [3, 10, 11]. The observed splitting of the $\nu(U=O)$ mode indicates the possibility of bent $[O=U=O]^{2+}$ cores in the complexes. Apart from these, the IR spectrum of 2 exhibits features characteristic of the coordinated aqua ligand [12a]. Interestingly, as a result of hydrogen-bond formation between NH₄⁺ and F⁻, the ν_4 mode of NH₄⁺ ion appeared in the IR spectrum of 1 at a frequency higher than 1400 cm⁻¹, the combination band ($\nu_4 + \nu_6$) became IR-active [13] and the U-F stretching band was lowered and broadened in comparison to that of 2.

Reactivity

The reaction of $SO_2(g)$ with 1 in an aqueous medium was facile and straighforward. The complete dissolution

of 1 and the absence of the peroxo mode $[\nu(O=O)$ at c. 850 cm⁻¹] in the IR spectrum of the product isolated from the solution indicated that the reaction had been completed. The bonded peroxide interacted with the substrate gas giving rise to a ternary complex $(NH_4)_2[UO_2F_2(SO_4)] \cdot H_2O$ (3) at pH 2. Product 3 is new although many uranyl fluoride sulfato complexes, e.g. $K_2[UO_2F_2(SO_4)] \cdot H_2O$ [14], $NH_4[UO_2F(SO_4)]$ [15, 16], $(NH_4)_2[UO_2F_2(SO_4)]$ [16], $(NH_4)_7[(UO_2)_2F_9(SO_4)]$ [15] and $(NH_4)_2[(UO_2)_2F_4(SO_4)(H_2O)_2)]$ [15], are known.

The yellow complex 3 is soluble in water with the electrical conductance of its solution (10^{-3} M) being $258 \Omega^{-1} \mathrm{cm}^2 \mathrm{mol}^{-1}$ in conformity with its 2:1 electrolytic nature. The vibrational spectrum of 3 supports its formulation. In contrast to the spectra of 1 and 2, the $\nu(U=O)$ band for 3 was not split, suggesting the presence of a linear O=U=O grouping. The evidence for bidentate sulfate was provided by the splitting of the ν_3 and ν_4 vibrations into three bands each (Table 1). Significantly, the occurrence of the split ν_3 modes at relatively lower wavenumbers ($< 1200 \text{ cm}^{-1}$) relative to those of a chelated sulfate [12b] indicates the bridging nature of the bidentate ligand. Equally interesting was the broadening of the $\nu(U-F)$ band, implying the existence of fluoride bridges. Incidentally, this type of double bridging is encountered in mixed fluoro-(sulfato)metallates [17] including $K_2[UO_2F_2(SO_4)]$. H_2O [14]. The IR spectrum of 3 is fully consistent with the crystallographically characterized that of $K_2[UO_2F_2(SO_4)] \cdot H_2O$ [14]. Given the similarity of the spectra, a similar structure for the former complex is likely.

Acknowledgement

We thank the CSIR, New Delhi for a fellowship to CRB and the DAE, Government of India for partial financial support.

References

- 1 M.K. Chaudhuri, D.T. Khathing and P. Srinivas, J. Fluorine Chem., 56 (1992) 305.
- 2 M.K. Chaudhuri, P. Srinivas and D.T. Khathing, *Polyhedron*, 12 (1993) 227.
- 3 M.N. Bhattacharjee, M.K. Chaudhuri and R.N. Dutta Purkayastha, J. Chem. Soc., Dalton Trans., (1985) 409.
- 4 M.N. Bhattacharjee, M.K. Chaudhuri and N.S. Islam, *Inorg. Chem.*, 28 (1989) 2420.
- 5 C.R. Bhattacharjee, M. Bhattacharjee, M.K. Chaudhuri and S. Choudhury, *Polyhedron*, 9 (1990) 1653.
- 6 M. Bhattacharjee, M.K. Chaudhuri and N.S. Islam, Proc. Indian Acad. Sci. (Chem. Sci.), 102 (1990) 365.
- 7 C.R. Bhattacharjee and M.K. Chaudhuri, J. Chem. Soc., Dalton Trans., (1992) 2943.
- 8 M.K. Chaudhuri and P.K. Choudhury, Chem. Ind. (London), (1979) 88.
- ⁹ M. Bhattacharjee, M.K. Chaudhuri and R.N. Dutta Purkayastha, *Inorg. Chem.*, 25 (1986) 2354.
- W.P. Griffith, J. Chem. Soc., (1963) 5345; *ibid.*, (1964) 5248;
 W.P. Griffith and T.D. Wickins, *ibid.*, (1968) 397; C. Djordjevic,
 S.A. Craig and E. Sinn, *Inorg. Chem.*, 24 (1985) 1283.
- 11 B. Friec and H.H. Hyman, Inorg. Chem., 6 (1967) 2233.
- 12 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn., Wiley-Interscience, New York, 1986, (a) p. 228, (b) p. 249.
- 13 D.S. Crocket and H.M. Haendler, J. Am. Chem. Soc., 82 (1960) 4158.
- 14 N.W. Alcock, M.M. Roberts and M.C. Chakravorti, Acta Crystallogr., B36 (1980) 687.
- 15 I.I. Chernayev, G.V. Ellert, L.K. Shubochkin and R.N. Shchelokov, Zh. Neorg. Khim., 8 (1963) 1584.
- 16 M.C. Chakravorti and P.K. Bharadwaj, J. Inorg. Nucl. Chem., 41 (1979) 1149.
- 17 A.J. Edwards, J. Chem. Soc. A, (1971) 3074; M.N. Bhattacharjee, M.K. Chaudhuri, M. Devi and K. Yhome, J. Chem. Soc., Dalton Trans., (1987) 1055; M.N. Bhattacharjee, M.K. Chaudhuri and M. Devi, Polyhedron, 8 (1989) 457.